Pre_GI: SWBIT SVG BLASTP

Query: NC_006155:1191307 Yersinia pseudotuberculosis IP 32953, complete genome

Lineage: Yersinia pseudotuberculosis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is a fully virulent serotype I strain isolated from a human patient. Environmental bacterium that causes gastrointestinal disease. Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. This organism was first isolated in 1883 by Malassez and Vignal and is termed pseudotuberculosis since it causes lesions in the lung that are similar to those observed during tuberculosis infection. It is ubiquitous in the environment and is a food and waterborne pathogen that affects animals as well as humans by causing gastroenteritis like Yersinia enterocolitica.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008228:3679949 Pseudoalteromonas atlantica T6c, complete genome

Lineage: Pseudoalteromonas atlantica; Pseudoalteromonas; Pseudoalteromonadaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: Isolated from a biofilm from San Diego Bay in California. Marine biofilm bacterium associated with shell disease in shellfish. A common marine bacterium that exists both in the water column, and in biofilms attached to surfaces. This organism produces a well characterized, commercially important agarase. Pseudoalteromonas atlantica has been isolated from lesions on crabs with shell disease. Shell disease is characterized by progressive degradation of the shell, often leading to an infection of the hemolymph (blood) and may be caused by Pseudoalteromonas, Alteromonas, Vibrio, or other marine organisms. In addition to producing extracellular enzymes which attack the shell, Pseudoalteromonas atlantica produces a the lipopolysaccharide which has been shown to be a potential virulence factor in shell disease.