Pre_GI: SWBIT SVG BLASTP

Query: NC_006086:1329915 Streptococcus pyogenes MGAS10394, complete genome

Lineage: Streptococcus pyogenes; Streptococcus; Streptococcaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This strain is a serotype M6 isolate cultured from a child with pharyngitis in private elementary school in Pennsilvania, USA. Causes tonsilitis. Streptococci are Gram-positive, nonmotile, nonsporeforming, catalase-negative cocci that occur in pairs or chains. Members of this genus vary widely in pathogenic potential. Most streptococci are facultative anaerobes, and some are obligate anaerobes. Serologic grouping is based on antigenic differences in cell wall carbohydrates, in cell wall pili-associated protein, and in the polysaccharide capsule in group B streptococci. This organism is a member of the normal human nasopharyngeal flora. Streptococcus pyogenes is a group A streptococcus and is the leading cause of uncomplicated bacterial pharyngitis and tonsillitis. This organism is commonly referred to by the lay press as "flesh eating bacteria".

No Graph yet!

Subject: NC_010410:3719599 Acinetobacter baumannii AYE, complete genome

Lineage: Acinetobacter baumannii; Acinetobacter; Moraxellaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain is responsible for community-acquired infections and is highly resistant to antibiotics. This bacterium is commonly isolated from the hospital environment and hospitalized patients. It is an aquatic organism, and is often cultured from liquid medical samples such as respiratory secretions, wounds, and urine. Acinetobacter also colonizes irrigating solutions and intravenous solutions. Although it has low virulence, it is capable of causing infection. Most isolates recovered from patients represent colonization rather than infection. When infections do occur, they usually occur in the blood, or in organs with a high fluid content, such as the lungs or urinary tract. Infections by this organism are becoming increasingly problematic due to the high number of resistance genes found in clinical isolates. Some strains are now resistant to all known antibiotics. Most of these genes appear to have been transferred horizontally from other organisms.