Pre_GI: SWBIT SVG BLASTP

Query: NC_006085:308567 Propionibacterium acnes KPA171202, complete genome

Lineage: Propionibacterium acnes; Propionibacterium; Propionibacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Isolated from human skin. Acne causing bacterium. This bacterium is the most common gram-positive, non-spore forming, anaerobic rod encountered in clinical specimens. The causative agent of acne, it typically grows as an obligate anaerobe. Some strains are aerotolerant, but still show better growth as an anaerobe. It has the ability to produce propionic acid, as its name suggests. It also has the ability to produce catalase along with indole, nitrate, or both indole and nitrate. Propionibacterium resembles Corynebacterium in morphology and arrangement, but is non-toxigenic.It is a common resident of the pilosebaceous (hair follicle) glands of the human skin. The bacteria release lipases to digest a surplus of the skin oil, sebum, that has been produced. The combination of digestive products (fatty acids) and bacterial antigens stimulates an intense local inflammation that bursts the hair follicle. Since acne is caused in part from an infection, it can be suppressed with topical and oral antibiotics such as clindamycin, erythromycin, or tetracycline. Some other forms of therapy include chemicals that enhance skin removal or slow the production of sebum.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008347:174000 Maricaulis maris MCS10, complete genome

Lineage: Maricaulis maris; Maricaulis; Hyphomonadaceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: Marine oligotrophs. Maricaulis maris MCS10 was isolated from Puget Sound in Washington, USA. Formerly Caulobacter maris, this organism inhabits marine environments and plays an important part in biogeochemical cycling of organic nutrients. This bacterium undergoes an unusual developmental cycle in which a swarming motile cell becomes a stalked cell that is attached to a solid surface. The stalked cell then undergoes asymmetric cell division and produces one flagellated motile daughter cell and one stalked daughter cell.