Pre_GI: SWBIT SVG BLASTP

Query: NC_005956:1402500 Bartonella henselae str. Houston-1, complete genome

Lineage: Bartonella henselae; Bartonella; Bartonellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Bartonella henselae str. Houston-1 (ATCC 49882) was isolated from human blood in Houston Texas. Causative agent of cat scratch fever. This group of alpha proteobacteria are unique among pathogens in that they cause angiogenic lesions. This organism was identified as the causative agent of cat scratch fever, a disease found commonly in children or in immunocompromised adults. The proliferation of the vascular endothelium (bacillary angiomatosis) is characterisitic of Bartonella infection and results in multiplication of the bacterium's host cells. Infected macrophages are stimulated to release vascular endothelial growth factor (VEGF) and interleukin 1 beta, both of which promote angiogenesis. Endothelial cells are also stimulated to grow and divide by direct contact with bacterial cells. In addition, programmed cell death (apoptosis) of endothelial cells is inhibited, combatting a common mechanism eukaryotic cells use to deal with bacterial infection. Other pathogenicity factors include pili and outer membrane adhesins for attachment to host cells.

No Graph yet!

Subject: NC_007952:1293024 Burkholderia xenovorans LB400 chromosome 2, complete sequence

Lineage: Burkholderia xenovorans; Burkholderia; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Originally identified as Pseudomonas sp. LB400 that was found in contaminated soil in upstate New York, USA, this organism is now classified in the genus Burkholderia. Polychlorinated biphenyl-degrading bacterium. Member of the genus Burkholderia are versatile organisms that occupy a surprisingly wide range of ecological niches. These bacteria are exploited for biocontrol, bioremediation, and plant growth promotion purposes. Burkholderia xenovorans has been found on fungi, animals, and from human clinical isolates such as from cystic fibrosis (CF) patients. It may be tightly associated with white-rot fungus, as the degadation of lignin by the fungus results in aromatic compounds the bacterium can then degrade. This organism is exceptionally capable of degradation of polychlorinated biphenyls (PCBs), which are environmental pollutants, and thus it may play a role in bioremediation of polluted and toxic sites and is studied as a model bioremediator. PCBs can be utilized as the sole carbon and energy source by this organism. The pathways for degradation of PCBs have been extensively characterized at both the genetic and the molecular level and have become a model system for the bacterial breakdown of these very persistent environmental contaminants.