Pre_GI: SWBIT SVG BLASTP

Query: NC_005823:3454000 Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130

Lineage: Leptospira interrogans; Leptospira; Leptospiraceae; Spirochaetales; Spirochaetes; Bacteria

General Information: This strain was isolated from a patient with severe leptospirosis during an epidemic in 1996. This organism is the causative agent of leptospirosis, a tropical zoonosis transmitted by direct contact with the urine of infected animals. This motile and obligately aerobic organism grows optimally at 28-30 C. Many serovars are adapted for specific mammalian reservoir hosts, which harbor the organisms in their renal tubules and shed them in their urine. Because of the large spectrum of animal species that serve as reservoirs, leptospirosis is considered to be the world's most widespread zoonotic disease.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006511:4119332 Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This serovar has a narrow host range and causes a typhoid-like (paratyphoid fever) illness in humans. It is especially prevalent in southern and eastern Asia, and has been associated with some particularly virulent outbreaks. A number of isolates are increasingly antibiotic resistant. Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.