Pre_GI: SWBIT SVG BLASTP

Query: NC_005810:2180303 Yersinia pestis biovar Microtus str. 91001, complete genome

Lineage: Yersinia pestis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Causative agent of plague. Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. It is the causative agent of plague (bubonic and pulmonary) a devastating disease which has killed millions worldwide. The organism can be transmitted from rats to humans through the bite of an infected flea or from human-to-human through the air during widespread infection. Yersinia pestis is an extremely pathogenic organism that requires very few numbers in order to cause disease, and is often lethal if left untreated. The organism is enteroinvasive, and can survive and propagate in macrophages prior to spreading systemically throughout the host. Yersinia pestis consists of three biotypes or serovars, Antiqua, Mediavalis, and Orientalis, that are associated with three major pandemics throughout human history. pMT1 encodes a protein, murine toxin, that aids rat-to-human transmission by enhancing survival of the organism in the flea midgut. Yersinia pestis also contains a PAI on the chromosome that is similar to the SPI-2 PAI from Salmonella that allows intracellular survival in the organism.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004757:427483 Nitrosomonas europaea ATCC 19718, complete genome

Lineage: Nitrosomonas europaea; Nitrosomonas; Nitrosomonadaceae; Nitrosomonadales; Proteobacteria; Bacteria

General Information: Ammonia-oxidizing bacterium. This organism is an obligate chemo-lithoautotroph as it only uses ammonia and carbon dioxide and mineral salts for growth, and is an important part of the global biogeochemical nitrogen cycle. It can derive all energy requirements from the oxidation of ammonia to nitrate, driving global nitrogen from the reduced insoluble form to the oxidized and potentially gaseous form (including NO and NO2 which are greenhouse gases). The energy derived from ammonia oxidation is in turn used to drive carbon fixation. This bacterium also provides plants with a readily available form of nitrogen, is important in wastewater treatment, and may be involved in bioremediation of sites contaminated with toxic compounds.