Pre_GI: SWBIT SVG BLASTP

Query: NC_005363:2172444 Bdellovibrio bacteriovorus HD100, complete genome

Lineage: Bdellovibrio bacteriovorus; Bdellovibrio; Bdellovibrionaceae; Bdellovibrionales; Proteobacteria; Bacteria

General Information: This organism is unique in that it is a bacteriolytic microbe that preys on other gram negative bacteria. It is found throughout soil, sewage, and aquatic environments, and is often associated with biofilms. This organism has a biphasic lifestyle which consists of a free living and motile phase, and an attack phase where the bacterium attaches to a host cell, burrows into the periplasm, and begins to degrade the host from the inside out. The organism sheds its flagellum once it makes irreversible contact with the host, and when it is inside, begins to form a bdelloplast, resulting in degradation of the host cell inner membrane and alteration of its peptidoglycan layer, resulting in a spherical cell. The Bdellovibrio cell elongates until it forms a long coiled structure which then divides, forming many flagellated progeny which continue the degradation of the host cell to propagate the life cycle. The genome encodes a large number of degradative and lytic enzymes which are used to degrade the host organism. The organism has numerous deficiencies in its amino acid biosynthetic pathways, suggesting it utilizes prey metabolites for protein synthesis.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_014623:4535544 Stigmatella aurantiaca DW4/3-1 chromosome, complete genome

Lineage: Stigmatella aurantiaca; Stigmatella; Cystobacteraceae; Myxococcales; Proteobacteria; Bacteria

General Information: Social gliding soil bacterium. Stigmatella aurantica, commonly isolated from rotting wood and bark, is a member of a group of organisms called myxobacteria. These organisms have a complex development and differentiation life cycle. When cell density increases, the organism switches to "social motility" where aggregates of cells can gather together into masses termed fruiting bodies that may consist of up to 100,000 cells. Stigmatella aurantica produces a number of compounds, such as aurafuron A and stigmatellin, which may be important as anti-cancer agents.