Pre_GI: SWBIT SVG BLASTP

Query: NC_005125:3420270 Gloeobacter violaceus PCC 7421, complete genome

Lineage: Gloeobacter violaceus; Gloeobacter; ; Gloeobacterales; Cyanobacteria; Bacteria

General Information: This organism was isolated from a calcereous (chalky) rock in Switzerland. Photosynthetic bacterium. This organism is an obligate photoautotroph that lacks thylakoid membranes and probably has its photosynthetic machinery in the cytoplasmic membrane with various components exposed to the periplasm whereas in other cyanobacteria the components are situated in the thylakoid membrane and are exposed to the cytoplasm. This unusual arrangement may be due to the lack of various fatty acids that are found in the thylakoid membrane in other cyanobacteria. It has been predicted that this organism was one of the earliest to diverge from the cyanobacterial line.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_014976:1174430 Bacillus subtilis BSn5 chromosome, complete genome

Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Bacillus subtilis BSn5 was isolated from Amorphophallus konjac calli tissue culture. Bacilllus subtilis BSn5 could inhibit Erwinia carotovora subsp. carotovora strain SCG1, which causes Amorphophallus soft rot disease and affects Amorphophallus industry development This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system.The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.