Pre_GI: SWBIT SVG BLASTP

Query: NC_004917:340997 Helicobacter hepaticus ATCC 51449, complete genome

Lineage: Helicobacter hepaticus; Helicobacter; Helicobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: This organism was found to be linked to an increasing incidence of liver tumors in mouse colonies at the National Cancer Institute in 1992. Normally it resides in the lower intestines, but it can cause chronic hepatitis. This organism has a similar urease gene cluster and cytolethal distending toxin as compared to Helicobacter pylori, but lacks other virulence factors such as the vacuolating cytotoxin and the cag pathogenicity island. However, it does contain a pathogenicity island that encodes proteins similar to those found in a type IV secretion system. Causes liver disease. This genus consists of organisms that colonize the mucosal layer of the gastrointestinal tract or are found enterohepatically (in the liver). This species was associated with an increase in liver tumors. It can cause active chronic hepatitis and typhlitis (inflammation of a region at the beginning of the large intestine), hepatocellular tumors, and gastric bowel disease in various mice strains.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007912:1173752 Saccharophagus degradans 2-40, complete genome

Lineage: Saccharophagus degradans; Saccharophagus; Alteromonadaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This strain is a marine gamma-proteobacterium that was isolated from decaying Spartina alterniflora, a salt marsh cord grass, in the Chesapeake Bay, USA. Saccharophagus degradans 2-40 has been used to produce ethanol from plant material and may be useful for the production bioethanol. Bacterium able to degrade complex carbohydrates. Saccharophagus degradans is capable of degrading insoluble complex carbohydrates through the collective action of enzyme complexes found on its cell surfaces, utilizing the degradation products as a carbon source. This organism may be useful in bioremediation. The degradative enzymes this organism produces are typically exoenzymes that are collected and organized into large surface complexes termed cellulosomes.