Pre_GI: SWBIT SVG BLASTP

Query: NC_004757:427483 Nitrosomonas europaea ATCC 19718, complete genome

Lineage: Nitrosomonas europaea; Nitrosomonas; Nitrosomonadaceae; Nitrosomonadales; Proteobacteria; Bacteria

General Information: Ammonia-oxidizing bacterium. This organism is an obligate chemo-lithoautotroph as it only uses ammonia and carbon dioxide and mineral salts for growth, and is an important part of the global biogeochemical nitrogen cycle. It can derive all energy requirements from the oxidation of ammonia to nitrate, driving global nitrogen from the reduced insoluble form to the oxidized and potentially gaseous form (including NO and NO2 which are greenhouse gases). The energy derived from ammonia oxidation is in turn used to drive carbon fixation. This bacterium also provides plants with a readily available form of nitrogen, is important in wastewater treatment, and may be involved in bioremediation of sites contaminated with toxic compounds.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_020064:3825916 Serratia marcescens FGI94, complete genome

Lineage: Serratia marcescens; Serratia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism was discovered in 1819 by Bizio who named the organism after the Italian physicist Serrati. It was considered a nonpathogenic organism until late in the 20th century, although pathogenicity was noted as early as 1913. Serratia marcescens is an opportunistic human pathogen that is increasingly associated with life-threatening hospital-acquired infections. It is an environmental organism that has a broad host range, and is capable of infecting vertebrates and invertebrates, as well as plants. In humans, Serratia marcescens can cause meningitis (inflammation of the membrane surrounding the brain and spinal cord), endocarditis (inflammation of heart muscle) and pyelonephritis (inflammation of the kidneys). Many strains are resistant to multiple antibiotics. Environmental isolates are noted by production of the red pigment prodigiosin.