Pre_GI: SWBIT SVG BLASTP

Query: NC_004631:283289 Salmonella enterica subsp. enterica serovar Typhi Ty2, complete

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This pathogenic strain of Salmonella typhi was isolated in the early 1970s. It contains no multidrug resistance plasmids and has been used for vaccine development. This serovar is a human-specific organism that causes the life-threatening illness Typhoid fever which is acquired by coming into contact with contaminated food or water. Annually, 17 million people are infected, with 600,000 fatalities, mostly in developing countries. It contains multiple fimbrial operons that may be used to create extracellular appendages for attachment and entry into host intestinal epithelial cells. Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_009012:2806000 Clostridium thermocellum ATCC 27405, complete genome

Lineage: Clostridium thermocellum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain is a well studied producer of endoglucanase and several restriction endonucleases. Thermophilic cellulose degrading bacterium. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. This organism is a thermophilic anaerobe that produces an extracellular enzyme system capable of degrading crystalline cellulose to soluble sugars that are further utilized as the carbon source for growth.