Pre_GI: SWBIT SVG BLASTP

Query: NC_004603:3080614 Vibrio parahaemolyticus RIMD 2210633 chromosome I, complete

Lineage: Vibrio parahaemolyticus; Vibrio; Vibrionaceae; Vibrionales; Proteobacteria; Bacteria

General Information: This is a clinical strain isolated in 1996 in Osaka, Japan. It contains a type III secretion system which may enable colonization and penetration of the host intestinal epithelial layer, and possibly lead to septicemia. The genome contains multipe chromosomal rearrangements as compared to Vibrio cholerae. The organism also produces a hemolysin (thermostable direct hemolysin - TDH) that is particular to Vibrio parahaemolyticus. This genus is abundant in marine or freshwater environments such as estuaries, brackish ponds, or coastal areas; regions that provide an important reservoir for the organism in between outbreaks of the disease. Vibrio can affect shellfish, finfish, and other marine animals and a number of species are pathogenic for humans. This species causes food poisoning (gastroenteritis) in countries that have elevated levels of seafood consumption such as Japan.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_015662:15641 Buchnera aphidicola (Cinara tujafilina) chromosome, complete

Lineage: Buchnera aphidicola; Buchnera; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: It is believed that the Buchnera provide the essential nutrients the host lacks. Besides a nutritional co-dependence, due to a co-existence of millions of years, Buchnera have lost the ability to produce cell surface components such as lipopolysaccharides. This makes for an obligate endosymbiont relationship between host and Buchnera. Buchnera are prokaryotic cells which belong to the gamma-Proteobacteria, closely related to the Enterobacteriaceae family. Phylogenetic studies using 16S rRNA indicate that the symbiotic relationship was established around 200-250 million years ago. Since Buchnera are closely related to Escherichia coli and Haemophilus influenzae, comparative genomic studies can shed light on the evolutionary mechanisms of intracellular endosymbiosis as well as the different underlying molecular basis between organisms with parasitic behavior and symbionts.