Pre_GI: SWBIT SVG BLASTP

Query: NC_004557:162670 Clostridium tetani E88, complete genome

Lineage: Clostridium tetani; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain is a virulent nonsporulating variant of strain Massachusetts used in vaccine production. Causes tetanus. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Known opportunistic toxin-producing pathogens in animals and humans. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. This organism causes tetanus (lockjaw) in humans. At the tissue level, the bacterium then releases an exotoxin called tetanospasmin that causes certain nervous system irregularities by means of retrograde tramsmission through neurons to the brain. If nervous impulses cannot be checked by normal inhibitory mechanisms, it produces the generalized muscular spasms characteristic of tetanus.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_013890:808791 Dehalococcoides sp. GT chromosome, complete genome

Lineage: Dehalococcoides mccartyi; Dehalococcoides; Dehalococcoidaceae; Dehalococcoidales; Chloroflexi; Bacteria

General Information: Temp: Mesophile; Habitat: Fresh water, Groundwater. Dehalococcoides sp. GT was isolated from an chloroethene-contaminated aquifer. This strain can dechlorinate trichloroethene and vinyl chloride. This organism was isolated from environments contaminated with organic chlorinated chemicals such as tetrachloroethene (PCE) and trichloroethane (TCE), common contaminants in the anaerobic subsurface. There are at least 15 organisms from different metabolic groups, halorespirators, acetogens, methanogens and facultative anaerobes, that are able to metabolize PCE. Some of these organisms couple dehalogenation to energy conservation and utilize PCE as the only source of energy while others dehalogenate tetrachloroethene fortuitously. This non-methanogenic, non-acetogenic culture is able to grow with hydrogen as the electron donor, indicating that hydrogen/PCE serves as an electron donor/acceptor for energy conservation and growth. This organism can only grow anaerobically in the presence of hydrogen as an electron donor and chlorinated compounds as electron acceptors. Dehalococcoides ethenogenes is typically found at sites contaminated with chlorinated solvents, and have been independently isolated in dozens of sites across the USA.