Pre_GI: SWBIT SVG BLASTP

Query: NC_004369:2968251 Corynebacterium efficiens YS-314, complete genome

Lineage: Corynebacterium efficiens; Corynebacterium; Corynebacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This is the type strain of C. efficiens isolated by researchers of Ajinomoto food company from soils at Kanagawa, Japan in the late 1980's. The strain can grow and produce glutamate at temperatures above up to 45oC in contrast to C. glutamicum that is only efficient at around 30oC. This feature is very beneficial for industrial applications, because less heat removal is required in fermenters to be used for cultivation of these bacteria. Glutamate-producing bacterium. They may be found as members of the normal microflora of humans, where these bacteria find a suitable niche in virtually every anatomic site. This organism is a recently proposed new species of the genus capable of producing significant quantities of glutamic acid (glutamate), an important enhancer of taste in the food industry. It is currently used commercially to produce glutamate and other amino acids and compounds.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_009839:30409 Campylobacter jejuni subsp. jejuni 81116, complete genome

Lineage: Campylobacter jejuni; Campylobacter; Campylobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: Campylobacter jejuni subsp. jejuni 81116 is a human strain isolated from a waterborne outbreak in 1982 and now routinely used as a laboratory strain. Causes food poisoning. This organism is the leading cause of bacterial food poisoning (campylobacteriosis) in the world, and is more prevalent than Salmonella enteritis (salmonellosis). Found throughout nature, it can colonize the intestines of both mammals and birds, and transmission to humans occurs via contaminated food products. This organism can invade the epithelial layer by first attaching to epithelial cells, then penetrating through them. Systemic infections can also occur causing more severe illnesses.