Query: NC_004369:2465461 Corynebacterium efficiens YS-314, complete genome Lineage: Corynebacterium efficiens; Corynebacterium; Corynebacteriaceae; Actinomycetales; Actinobacteria; Bacteria General Information: This is the type strain of C. efficiens isolated by researchers of Ajinomoto food company from soils at Kanagawa, Japan in the late 1980's. The strain can grow and produce glutamate at temperatures above up to 45oC in contrast to C. glutamicum that is only efficient at around 30oC. This feature is very beneficial for industrial applications, because less heat removal is required in fermenters to be used for cultivation of these bacteria. Glutamate-producing bacterium. They may be found as members of the normal microflora of humans, where these bacteria find a suitable niche in virtually every anatomic site. This organism is a recently proposed new species of the genus capable of producing significant quantities of glutamic acid (glutamate), an important enhancer of taste in the food industry. It is currently used commercially to produce glutamate and other amino acids and compounds.
- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark); - hypothetical protein; - cds: hover for description
General Information: Temp: Mesophile; Habitat: Host. Pectobacterium carotovorum causes soft-rot diseases of various plant hosts through degradation of the plant cell walls. Formerly Erwinia, these organisms are plant-specific pathogens that invade the vascular systems of plants. Pectobacterium colonize the intercellular spaces of plant cells and deliver potent effector molecules (Avr - avirulence) through a type III secretion system (Hrp - hypersensitive response and pathogenicity). Avr proteins control host-bacterium interactions, including host range. Expression of the plant cell-wall-degrading enzymes is controlled through a quorum-sensing mechanism that quantifies the number of Pectobacterium bacteria through measurement of the concentration of small molecules (acyl homoserine lactones) produced by Pectobacterium.