Query: NC_004344:672550 Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis, Lineage: Wigglesworthia glossinidia; Wigglesworthia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria General Information: This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis. As Wigglesworthia brevipalpis resides intracellularly, the resulting co-evolution with its host over millions of years has led to a drastic reduction in the bacterium's genome size, resulting in this its inability to survive outside the host. Tsetse fly endosymbiont. This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis, Glossina tachinoides, Glossina palpalis palpalis, and Glossina austeni. The tsetse fly is a vector for African trypanosomes, and is the main transmitter of deadly diseases in animals and humans in Africa. The fly feeds on a restricted diet, exclusively consisting of vertebrate blood, and lacks certain metabolic compounds needed for survival and reproduction. To complement this lack in nutrients, the tsetse fly relies mainly on the intracellular bacterial symbiont, Wigglesworthia glossinidia for its viability and fecundity.
- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark); - hypothetical protein; - cds: hover for description
General Information: This organism was isolated from the Dead Sea and will provide information on the proteins necessary for adaptation to a high salt environment. Halophilic archaeon. Halobacterial species are obligately halophilic microorganisms that have adapted to optimal growth under conditions of extremely high salinity 10 times that of sea water. They contain a correspondingly high concentration of salts internally and exhibit a variety of unusual and unique molecular characteristics. Since their discovery, extreme halophiles have been studied extensively by chemists, biochemists, microbiologists, and molecular biologists to define both molecular diversity and universal features of life. A notable list of early research milestones on halophiles includes the discovery of a cell envelope composed of an S-layer glycoprotein, archaeol ether lipids and purple membrane, and metabolic and biosynthetic processes operating at saturating salinities. These early discoveries established the value of investigations directed at extremophiles and set the stage for pioneering phylogenetic studies leading to the three-domain view of life and classification of Halobacterium as a member of the archaeal domain. This organism is also know as "Halobacterium of the Dead Sea". Growth occurs in 1.7-5.1 M NaCl with optimum salt concentration of 3.4-3.9 M NaCl. The cytosol of this organism is a supersaturated salt solution in which proteins are soluble and active. This halophile is chemoorganotrophic and able to use a wide variety of compounds as sole carbon and energy sources.