Pre_GI: SWBIT SVG BLASTP

Query: NC_004344:672550 Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis,

Lineage: Wigglesworthia glossinidia; Wigglesworthia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis. As Wigglesworthia brevipalpis resides intracellularly, the resulting co-evolution with its host over millions of years has led to a drastic reduction in the bacterium's genome size, resulting in this its inability to survive outside the host. Tsetse fly endosymbiont. This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis, Glossina tachinoides, Glossina palpalis palpalis, and Glossina austeni. The tsetse fly is a vector for African trypanosomes, and is the main transmitter of deadly diseases in animals and humans in Africa. The fly feeds on a restricted diet, exclusively consisting of vertebrate blood, and lacks certain metabolic compounds needed for survival and reproduction. To complement this lack in nutrients, the tsetse fly relies mainly on the intracellular bacterial symbiont, Wigglesworthia glossinidia for its viability and fecundity.

No Graph yet!

Subject: NC_000908:160072 Mycoplasma genitalium G37, complete genome

Lineage: Mycoplasma genitalium; Mycoplasma; Mycoplasmataceae; Mycoplasmatales; Tenericutes; Bacteria

General Information: This strain was isolated as a urethral specimen from a male patient with nongonococcal urethritis. This genus currently comprizes more than 120 obligate parasitic species found in the wide spectrum of hosts, including humans, animals, insects and plants. The primary habitats of human and animal mycoplasmas are mucouse membranes of the respiratory and urogenital tracts, eyes, mammary glands and the joints. Infection that proceeds through attachment of the bacteria to the host cell via specialized surface proteins, adhesins, and subsequent invation, results in prolonged intracellular persistence that may cause lethality. Once detected in association with their eukaryotic host tissue, most of mycoplasmas can be cultivated in the absence of a host if their extremely fastidious growth requirements are met.