Pre_GI: SWBIT SVG BLASTP

Query: NC_004061:31500 Buchnera aphidicola str. Sg (Schizaphis graminum), complete genome

Lineage: Buchnera aphidicola; Buchnera; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is the symbiont of the aphid Schizaphis graminum and contains a large circular chromosome. Aphid endosymbiont. Almost all aphids contain maternally transmitted bacteriocyte cells, which themselves contain bacteria called Buchnera. The aphids live on a restricted diet (plant sap), rich in carbohydrates, but poor in nitrogenous or other essential compounds. It is believed that the Buchnera provide the essential nutrients the host lacks. Besides a nutritional co-dependence, due to a co-existence of millions of years, Buchnera have lost the ability to produce cell surface components such as lipopolysaccharides. This makes for an obligate endosymbiont relationship between host and Buchnera. Buchnera are prokaryotic cells which belong to the gamma-Proteobacteria, closely related to the Enterobacteriaceae family. Phylogenetic studies using 16S rRNA indicate that the symbiotic relationship was established around 200-250 million years ago. Since Buchnera are closely related to Escherichia coli and Haemophilus influenzae, comparative genomic studies can shed light on the evolutionary mechanisms of intracellular endosymbiosis as well as the different underlying molecular basis between organisms with parasitic behavior and symbionts.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_011891:2607812 Anaeromyxobacter dehalogenans 2CP-1, complete genome

Lineage: Anaeromyxobacter dehalogenans; Anaeromyxobacter; Myxococcaceae; Myxococcales; Proteobacteria; Bacteria

General Information: This strain (2CP-1; ATCC BAA-258) is the type strain for the species and was isolated from stream sediment near Lansing, Mich., USA. This anaerobic species was originally isolated by enrichment and isolation of single plate-grown colonies, and was the first pure culture of myxobacteria able to grow anaerobically. The unique physiological characteristics of this organism include the ability to use ortho-substituted mono- and dichlorinated phenols, nitrate, H2 and fumarate as terminal electron acceptors.