Query: NC_003902:3666544 Xanthomonas campestris pv. campestris str. ATCC 33913, complete Lineage: Xanthomonas campestris; Xanthomonas; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria General Information: This strain was originally isolated from cabbage. Causes black rot disease in crucifers. This genus consists of plant-specific yellow-pigmented microbes, some of which are economically important phytopathogens that devastate crops such as citrus plants, rice, beans, grape, and cotton. These organisms are almost exclusively found associated with their plant hosts and are not found free in the soil. This species is a major cause of black rot in crucifers, a disease that results in massive tissue degeneration. It also produces an extracellular polysaccharide known as xanthan, which is harvested commercially as a food stabilizing agent for use in industry.
- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark); - hypothetical protein; - cds: hover for description
General Information: Pseudomonas aeruginosa LESB58 is a member of the Liverpool epidemic strains (LES) first isolated at the Liverpool Cystic Fibrosis (CF) clinic center. These isolates are highly virulent and readily transfered between CF patients and to non-CF individuals. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is an opportunistic human pathogen. While it rarely infects healthy individuals, immunocompromised patients, like burn victims, AIDS-, cancer- or cystic fibrosis-patients are at increased risk for infection with this environmentally versatile bacteria. It is an important soil bacterium with a complex metabolism capable of degrading polycyclic aromatic hydrocarbons, and producing interesting, biologically active secondary metabolites including quinolones, rhamnolipids, lectins, hydrogen cyanide, and phenazines. Production of these products is likely controlled by complex regulatory networks making Pseudomonas aeruginosa adaptable both to free-living and pathogenic lifestyles. The bacterium is naturally resistant to many antibiotics and disinfectants, which makes it a difficult pathogen to treat.