Pre_GI: SWBIT SVG BLASTP

Query: NC_003454:63500 Fusobacterium nucleatum subsp. nucleatum ATCC 25586, complete

Lineage: Fusobacterium nucleatum; Fusobacterium; Fusobacteriaceae; Fusobacteriales; Fusobacteria; Bacteria

General Information: Normal oral and gastrointestinal bacterium. This genus contains mostly obligately anaerobic bacilli. Many of the isolates are spindle-shaped, or fusiform. This organism belongs to the normal microflora of the human oral and gastrointestinal tracts. It is a very long and slender spindle-shaped bacillus with sharply pointed ends that is characterized by the ability to invade soft tissues. It acts as a bridge between early and late colonizers of the tooth surface, and exerts synergism with other bacteria in mixed infections. It is most frequently associated with periodontal diseases, as well as with some invasive human infections of the head and neck, chest, lung, liver and abdomen, and some anginas. One of the major amino acid and sugar fermentation pathways in Fusobacterium nucleatum produces butyric and acetic acids.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_009654:615504 Marinomonas sp. MWYL1, complete genome

Lineage: Marinomonas; Marinomonas; Oceanospirillaceae; Oceanospirillales; Proteobacteria; Bacteria

General Information: Marinomonas MWYL1 was isolated from the root surface of the salt marsh grass Spartina anglica, growing near the North Norfolk, England village of Stiffkey. The genus Marinomonas comprises a widespread group of g -proteobacteria that exist in coastal waters, and which had been earlier been included in the genus Alteromonas. The interest in Marinomonas MWYL 1 was that it could grow on the betaine molecule Dimethylsulphoniopropionate (DMSP) as sole carbon source and, when it did do, it released large amounts of the gas dimethyl sulphide. DMSP is a compatible solute that is used by many marine phytoplankton and seaweed macroalgae as an osmoticum and an anti-stress compound. In addition, a few known land angiosperms make DMSP and these include certain species of Spartina - hence the choice of these plants as a source for DMSP-degrading bacteria. Indeed, others had shown previously that the DMSP-catabolising bacteria isolated from Spartina root surfaces included Marinomonas strains.