Pre_GI: SWBIT SVG BLASTP

Query: NC_003366:64908 Clostridium perfringens str. 13, complete genome

Lineage: Clostridium perfringens; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain is a type A isolate from the soil. It can establish gas gangrene in a murine experimental model. Causative agent of gas gangrene. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This organism is a causative agent of a wide spectrum of necrotic enterotoxicoses. It also causes such animal diseases as lamb dysentery, ovine enterotoxemia (struck), pulpy kidney disease in lambs and other enterotoxemias in lambs and calves. It is commonly found in the environment (soil, sewage) and in the animal and human gastrointestinal tract as a member of the normal microflora. It is a fast growing (generation time 8-10 min) anaerobic flesh-eater. Active fermentative growth is accompanied by profuse generation of molecular hydrogen and carbon dioxide. It is also oxygen tolerant which makes it an easy object to work with in laboratories. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. All types produce the alpha toxin (phospholipase C). Type A strains that cause gas gangrene produce alpha toxin, theta (hemolysin), kappa (collagenase), mu (hyaluronidase), nu (DNAse) and neuraminidase which are all the enzymatic factors aiding the bacterium in invading and destruction of the host tissues. Type C strains produce alpha toxin, beta toxin and prefringolysin enteritis. In addition to alpha toxin, Type B strains produce beta toxin, types B and D produce the pore forming epsilon toxin and type E strains produce iota toxin.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_010125:2998619 Gluconacetobacter diazotrophicus PAl 5, complete genome

Lineage: Gluconacetobacter diazotrophicus; Gluconacetobacter; Acetobacteraceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Gluconacetobacter diazotrophicus strain PAL5 (ATCC 49037) was isolated from sugarcane roots in Brazil and will be used for comparative analysis. Nitrogen-fixing plant symbiont. This acid-tolerant organism is endophytic and colonizes internal plant tissues, establishing a symbiotic relationship with its host. This bacterium has been found in sugarcane, coffee, rice, tea, and other plants. The nitrogen-fixation systems of the bacterium provide the plant with essential nitrogenous compounds while the plant provides a protected environment for the bacterium to grow in. Nitrogen-fixation is important for sugarcane production, and this organism can fix nitrogen even in the presence of nitrate.