Pre_GI: SWBIT SVG BLASTP

Query: NC_003030:303812 Clostridium acetobutylicum ATCC 824, complete genome

Lineage: Clostridium acetobutylicum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was isolated in 1924 from garden soil in Connecticut, USA, by E. Wyer and L. Rettger. It is one of the best studied solventogenic clostridia. Solvent-producing bacterium. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This organism is a benign saccharolytic and proteolytic soil bacterium capable of producing a number of organic solvents (solventogenic bacterium) through fermentation of various organic compounds. acetobutyricum were isolated by Chaim Weizman during the World War I and used to develop industrial starch-based acetone, butanol and ethanol fermentation processes.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006624:2016000 Thermococcus kodakarensis KOD1, complete genome

Lineage: Thermococcus kodakarensis; Thermococcus; Thermococcaceae; Thermococcales; Euryarchaeota; Archaea

General Information: This organism was originally identified as Pyrococcus sp. strain KOD1. It was isolated from a solfatara on Kodakara Island, Japan. Hyperthermophilic archeon. This genus is a member of the order Thermococcales in the Euryarchaeota. Thermococcus sp. are the most commonly isolated hyperthermophilic organisms and are often isolated from marine hydrothermal vents and terrestrial hot sulfur springs. Elemental sulfur is either required for, or stimulates, growth. These obligate heterotrophs can ferment a variety of organic compounds, including peptides, amino acids, and sugars in the absence of sulfur. Thermococcus kodakaraensis is a hyperthermophilic archeon. Proteins from this organism have been extensively studied to find thermostable enzymes for industrial and biotechnological applications.