Pre_GI: SWBIT SVG BLASTP

Query: NC_003030:303812 Clostridium acetobutylicum ATCC 824, complete genome

Lineage: Clostridium acetobutylicum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was isolated in 1924 from garden soil in Connecticut, USA, by E. Wyer and L. Rettger. It is one of the best studied solventogenic clostridia. Solvent-producing bacterium. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This organism is a benign saccharolytic and proteolytic soil bacterium capable of producing a number of organic solvents (solventogenic bacterium) through fermentation of various organic compounds. acetobutyricum were isolated by Chaim Weizman during the World War I and used to develop industrial starch-based acetone, butanol and ethanol fermentation processes.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004310:1578918 Brucella suis 1330 chromosome I, complete sequence

Lineage: Brucella suis; Brucella; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: A swine isolate. Causes brucellosis, infectious abortions, fevers. They are highly infectious, and can be spread through contact with infected animal products or through the air, making them a potential bioterrorism agent. Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Virulence may depend on a type IV secretion system which may promote intracellular growth by secreting important effector molecules. This organism is a swine-specific Brucella. It causes infectious abortions in animals and a systemic, febrile (feverish) illness in humans. Brucella suis is considered a potential bioterrorism agent and was the first pathogenic organism to be weaponized by the USA.