Pre_GI: SWBIT SVG BLASTP

Query: NC_002951:1848684 Staphylococcus aureus subsp. aureus COL, complete genome

Lineage: Staphylococcus aureus; Staphylococcus; Staphylococcaceae; Bacillales; Firmicutes; Bacteria

General Information: This strain is a methicillin-resistant (MRSA) strain and is also resistant to several other antibiotics including penicillin and tetracycline. Causes skin infections. Staphylcocci are generally found inhabiting the skin and mucous membranes of mammals and birds. Some members of this genus can be found as human commensals and these are generally believed to have the greatest pathogenic potential in opportunistic infections. This organism is a major cause of nosocomial (hospital-acquired) and community-acquired infections. Continues to be a major cause of mortality and is responsible for a variety of infections including, boils, furuncles, styes, impetigo and other superficial skin infections in humans. Also known to cause more serious infections particularly in the chronically ill or immunocompromised. The ability to cause invasive disease is associated with persistance in the nasal cavity of a host.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_005957:4502733 Bacillus thuringiensis serovar konkukian str. 97-27, complete

Lineage: Bacillus thuringiensis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This organism was isolated from a case of severe human tissue necrosis which is unusual since human infections by this organism are rare. Produces insect toxinT his organism, also known as BT, is famous for the production of an insecticidal toxin. The bacterium was initially discovered as a pathogen of various insects and was first used as an insecticidal agent in the early part of this century. This organism, like many other Bacilli, is found in the soil, where it leads a saprophytic existence, but becomes an opportunistic pathogen of insects when ingested. The specific activity of the toxin towards insects and its lack of toxicity to animals has made this organism a useful biocontrol agent. The delta-endotoxin, which is produced during the sporulation part of the life cycle, causes midgut paralysis and disruption of feeding by the infected insect host. The delta-endotoxin, which is produced during the sporulation part of the life cycle, causes midgut paralysis and disruption of feeding by the infected insect host. The delta-endotoxin, which is produced during the sporulation part of the life cycle, causes midgut paralysis and disruption of feeding by the infected insect host. The presence of a parasporal crystal, which is outside the exosporium of the endospore, is indicative of production of the toxin, and serves as a marker for this species.Activation of the toxin typically requires a high pH environment such as the alkaline environments in insect midguts followed by proteolysis. Various toxin genes specific for a variety of insects have been studied, and many are now being used in genetically modified plants which have been engineered to produce the toxin themselves, eliminating the need to produce sufficient amounts of B. thuringiensis spores.