Pre_GI: SWBIT SVG BLASTP

Query: NC_002947:737924 Pseudomonas putida KT2440, complete genome

Lineage: Pseudomonas putida; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain was derived from a toluene-degrading isolate, Pseudomonas arvilla strain mt-2 (renamed Pseudomonas putida mt-2), by loss of its plasmid. Common environmental bacterium. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. As they are metabolically versatile, and well characterized, it makes them great candidates for biocatalysis, bioremediation and other agricultural applications. Certain strains have been used in the production of bioplastics.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004547:3866439 Erwinia carotovora subsp. atroseptica SCRI1043, complete genome

Lineage: Pectobacterium atrosepticum; Pectobacterium; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain (ATCC BAA-672) is a virulent blackleg isolated from the stem of a potato plant. Causative agent for blackleg and soft rot disease in potatoes. Formerly Erwinia, these organisms are plant-specific pathogens that invade the vascular systems of plants. Both Pectobacterium chrysanthemia and Pectobacterium carotovora cause soft-rot diseases of various plant hosts through degradation of the plant cell walls. Pectobacterium colonize the intercellular spaces of plant cells and deliver potent effector molecules (Avr - avirulence) through a type III secretion system (Hrp - hypersensitive response and pathogenicity). Avr proteins control host-bacterium interactions, including host range. Expression of the plant cell-wall-degrading enzymes is controlled through a quorum-sensing mechanism that quantifies the number of Pectobacterium bacteria through measurement of the concentration of small molecules (acyl homoserine lactones) produced by Pectobacterium. Pectobacterium atrosepticum is an environmentally widespread organism that causes blackleg and soft rot disease in potatoes. This organism produces pectolytic enzymes that destroy plant tissue and allow the bacteria to spread.