Pre_GI: SWBIT SVG BLASTP

Query: NC_002937:2068117 Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough, complete

Lineage: Desulfovibrio vulgaris; Desulfovibrio; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: This strain was isolated from clay soil near Hildenborough, UK in 1946. A sulfate reducing bacterium. These organisms typically grow anaerobically, although some can tolerate oxygen, and they utilize a wide variety of electron acceptors, including sulfate, sulfur, nitrate, and nitrite. A number of toxic metals are reduced, including uranium (VI), chromium (VI) and iron (III), making these organisms of interest as bioremediators. Metal corrosion, a problem that is partly the result of the collective activity of these bacteria, produces billions of dollars in losses each year to the petroleum industry. These organisms are also responsible for the production of poisonous hydrogen sulfide gas in marine sediments and in terrestrial environments such as drilling sites for petroleum products. This species is a sulfate reducer commonly found in a variety of soil and aquatic environments.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008358:2808299 Hyphomonas neptunium ATCC 15444, complete genome

Lineage: Hyphomonas neptunium; Hyphomonas; Hyphomonadaceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: Marine member of dimorphic prosthecate bacteria. This organism is also known as Hyphomicrobium neptunium. It has a biphasic life style, which consists of a motile phase of flagellated swarmer cells, and a cessile phase in which a long prosthecate is produced at one end of the bacteria through which budding cells emerge. Newly budded cells in turn produce flagella and go through a motile phase and the cycle continues. These organisms can colonize the surfaces of marine environments which enables additional species to colonize at later stages. This organism may be of use in treatment of water as they attach to a solid surface and are capable of degradation of a number of pollutants including aromatic hydrocarbons, dimethyl sulfoxide and methyl chloride.