Pre_GI: SWBIT SVG BLASTP

Query: NC_002927:383760 Bordetella bronchiseptica RB50, complete genome

Lineage: Bordetella bronchiseptica; Bordetella; Alcaligenaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This strain was isolated from a rabbit. Causes a respiratory illness in animals. This group of organisms is capable of invading the respiratory tract of animals and causing severe diseases. They express a number of virulence factors in order to do this including filamentous hemagglutinins for attachment, cytotoxins, and proteins that form a type III secretion system for transport of effector molecules into host cells. Bordetella bronchiseptica, which is one of the few Bordetella that is capable of persisting in the environment, is rarely found in humans and is often associated with animals. This organism cause respiratory disease most commonly in pigs, rabbits and dogs.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004741:3041294 Shigella flexneri 2a str. 2457T, complete genome

Lineage: Shigella flexneri; Shigella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This is a highly virulent strain that has been widely used for genetic and clinical research. Causes enteric disease. This genus is named for the Japanese scientist (Shiga) who discovered them in the 1890s. They are closely related to the Escherichia group, and may be considered the same species. are human-specific pathogens that are transmitted via contaminated food and water and are the leading causes of endemic bacillary dysentery, and over 1 million deaths worldwide are attributed to them. The bacteria infect the epithelial lining of the colon, causing acute inflammation by entering the host cell cytoplasm and spreading intercellularly. are extremely virulent organisms that require very few cells in order to cause disease. Both the type III secretion system, which delivers effector molecules into the host cell, and some of the translocated effectors such as the invasion plasmid antigens (Ipas), are encoded on the plasmid. The bacterium produces a surface protein that localizes to one pole of the cell (IcsA) which binds to and promotes actin polymerization, resulting in movement of the bacterium through the cell cytoplasm, and eventually to neighboring cells, which results in inflammatory destruction of the mucosal lining. This organism, along with Shigella sonnei, is the major cause of shigellosis in industrialized countries and is responsible for endemic infections.