Pre_GI: SWBIT SVG BLASTP

Query: NC_002516:6255854 Pseudomonas aeruginosa PAO1, complete genome

Lineage: Pseudomonas aeruginosa; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is an opportunistic human pathogen. While it rarely infects healthy individuals, immunocompromised patients, like burn victims, AIDS-, cancer- or cystic fibrosis-patients are at increased risk for infection with this environmentally versatile bacteria. It is an important soil bacterium with a complex metabolism capable of degrading polycyclic aromatic hydrocarbons, and producing interesting, biologically active secondary metabolites including quinolones, rhamnolipids, lectins, hydrogen cyanide, and phenazines. Production of these products is likely controlled by complex regulatory networks making Pseudomonas aeruginosa adaptable both to free-living and pathogenic lifestyles. The bacterium is naturally resistant to many antibiotics and disinfectants, which makes it a difficult pathogen to treat.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_015571:260664 Porphyromonas gingivalis TDC60, complete genome

Lineage: Porphyromonas gingivalis; Porphyromonas; Porphyromonadaceae; Bacteroidales; Bacteroidetes; Bacteria

General Information: This organism is associated with severe and chronic periodontal (tissues surrounding and supporting the tooth) diseases. Progression of the disease is caused by colonization by this organism in an anaerobic environment in host tissues and severe progression results in loss of the tissues supporting the tooth and eventually loss of the tooth itself. The black pigmentation characteristic of this bacterium comes from iron acquisition that does not use the typical siderophore system of other bacteria but accumulates hemin. Peptides appear to be the predominant carbon and energy source of this organism, perhaps in keeping with its ability to destroy host tissue. Oxygen tolerance systems play a part in establishment of the organism in the oral cavity, including a superoxide dismutase. Pathogenic factors include extracellular adhesins that mediate interactions with other bacteria as well as the extracellular matrix, and a host of degradative enzymes that are responsible for tissue degradation and spread of the organism including the gingipains, which are trypsin-like cysteine proteases.