Pre_GI: SWBIT SVG BLASTP

Query: NC_002516:6255854 Pseudomonas aeruginosa PAO1, complete genome

Lineage: Pseudomonas aeruginosa; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is an opportunistic human pathogen. While it rarely infects healthy individuals, immunocompromised patients, like burn victims, AIDS-, cancer- or cystic fibrosis-patients are at increased risk for infection with this environmentally versatile bacteria. It is an important soil bacterium with a complex metabolism capable of degrading polycyclic aromatic hydrocarbons, and producing interesting, biologically active secondary metabolites including quinolones, rhamnolipids, lectins, hydrogen cyanide, and phenazines. Production of these products is likely controlled by complex regulatory networks making Pseudomonas aeruginosa adaptable both to free-living and pathogenic lifestyles. The bacterium is naturally resistant to many antibiotics and disinfectants, which makes it a difficult pathogen to treat.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007298:3764048 Dechloromonas aromatica RCB, complete genome

Lineage: Dechloromonas aromatica; Dechloromonas; Rhodocyclaceae; Rhodocyclales; Proteobacteria; Bacteria

General Information: This strain was enriched as a hydrocarbon-oxidizing chlorate-reducer from the Potomac River, Maryland, USA. This organism is the first one to have the capability of benzene oxidation in pure anaerobic culture by coupling it to nitrate reduction which is of importance due to the anaerobic environments often found in bioremediation projects. It can reduce perchlorate and chlorate to chloride. This organism may be used for bioremediation as it can oxidize aromatic hydrocarbon compounds, including benzene, in the absence of oxygen. Benzene is an important pollutant, and is used in many manufacturing processes and is a component of diesel fuel.