Pre_GI: SWBIT SVG BLASTP

Query: NC_002506:298868 Vibrio cholerae O1 biovar eltor str. N16961 chromosome II, complete

Lineage: Vibrio cholerae; Vibrio; Vibrionaceae; Vibrionales; Proteobacteria; Bacteria

General Information: This is an epidemic serogroup of Vibrio cholerae isolated in 1971 in Bangladesh and is distinguished from the classical biotype due to hemolysin production. This genus is abundant in marine or freshwater environments such as estuaries, brackish ponds, or coastal areas; regions that provide an important reservoir for the organism in between outbreaks of the disease. Vibrio can affect shellfish, finfish, and other marine animals and a number of species are pathogenic for humans. Vibrio cholerae can colonize the mucosal surface of the small intestines of humans where it will cause cholera, a severe and sudden onset diarrheal disease. One famous outbreak was traced to a contaminated well in London in 1854 by John Snow, and epidemics, which can occur with extreme rapidity, are often associated with conditions of poor sanitation. The disease has a high lethality if left untreated, and millions have died over the centuries. There have been seven major pandemics between 1817 and today. Six were attributed to the classical biotype, while the 7th, which started in 1961, is associated with the El Tor biotype.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_011083:1993672 Salmonella enterica subsp. enterica serovar Heidelberg str. SL476,

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This is a multidrug resistant strain. Salmonella enterica subsp. enterica serovar Heidelberg is one of the more common serovars causing disease in the USA. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.