Pre_GI: SWBIT SVG BLASTP

Query: NC_002488:2657274 Xylella fastidiosa 9a5c, complete genome

Lineage: Xylella fastidiosa; Xylella; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: This strain was derived from a pathogenic strain (8.1b) isolated in 1992 in France that had come from infected twigs derived from the sweet orange strain Valencia in Brazil in the same year. This organism was first identified in 1993 as the causal agent of citrus variegated chlorosis, a disease that affects varieties of sweet oranges. Other strains of this species cause a range of diseases in mulberry, pear, almond, elm, sycamore, oak, maple, pecan and coffee which collectively result in multimillion dollar devastation of economically important plants. Xylella fastidiosa is similar to Xanthomonas campestris pv. campestris in that it produces a wide variety of pathogenic factors for colonization in a host-specific manner including a large number of fimbrial and afimbrial adhesins for attachment. It does not contain a type III secretion system, but possesses genes for a type II secretion system for export of exoenzymes that degrade the plant cell wall and allow the bacterium to colonize the plant xylem.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007498:3655304 Pelobacter carbinolicus DSM 2380, complete genome

Lineage: Pelobacter carbinolicus; Pelobacter; Pelobacteraceae; Desulfuromonadales; Proteobacteria; Bacteria

General Information: Pelobacter carbinolicus DSM 2380 was isolated from mud in Venice, Italy. Iron- and sulfur-reducing bacterium. Pelobacter carbinolicus is commonly isolated from marine and freshwater sediments, and sewage sludge. This organism can make up a significant portion of the anaerobic microbial community in these environments. Pelobacter carbinolicus is also able to grow using iron and sulfur as terminal electron acceptors. This organism is closely related to the sulfur-reducing Desulfuromonas spp. and iron-reducing Geobacter spp..