Pre_GI: SWBIT SVG BLASTP

Query: NC_001263:2574755 Deinococcus radiodurans R1 chromosome 1, complete sequence

Lineage: Deinococcus radiodurans; Deinococcus; Deinococcaceae; Deinococcales; Deinococcus-Thermus; Bacteria

General Information: This red-pigmented organism's name means "strange berry that withstands radiation", marking the fact that this organism is one of the most radiation-resistant known. It can tolerate radiation levels at 1000 times the levels that would kill a human and it was originally isolated in 1956 from a can of meat that had been irradiated with X-rays. The resistance to radiation may reflect its resistance to dessication, which also causes DNA damage. This organism may be of use in cleaning up toxic metals found at nuclear weapons production sites due to the radiation resistance. This bacterium is also a highly efficient transformer, and can readily take up exogenous DNA from the environment, which may also aid DNA repair. This organism carries multiple copies of many DNA repair genes, suggesting a robust system for dealing with DNA damage. The recombination system may rely on multiple copies of various repeat elements found throughout the genome.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_011420:3650724 Rhodospirillum centenum SW, complete genome

Lineage: Rhodospirillum centenum; Rhodospirillum; Rhodospirillaceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Rhodospirillum centenum, also called Rhodocista centenaria, is a nitrogen-fixing photoheterotroph with a complex life cycle. R. centenum is one of the few known thermotolerant purple bacteria species with optimal growth temperature of 44 dgrees C and a maximal growth temperature of 48 degrees C. In liquid media this organism is motile by a single polar flagellum. R. centenum produces lateral flagella to become a swarming cell. Under low nutrient conditions R. centenum forms a desiccation- and UV-resistant cyst. R. centenum can often be cultivated from hot springs such as those found at Yellowstone National Park. R. centenum is emerging as a model organism for genetic and molecular genetic analysis of cyst formation.