Pre_GI: SWBIT SVG BLASTP

Query: NC_001263:2236777 Deinococcus radiodurans R1 chromosome 1, complete sequence

Lineage: Deinococcus radiodurans; Deinococcus; Deinococcaceae; Deinococcales; Deinococcus-Thermus; Bacteria

General Information: This red-pigmented organism's name means "strange berry that withstands radiation", marking the fact that this organism is one of the most radiation-resistant known. It can tolerate radiation levels at 1000 times the levels that would kill a human and it was originally isolated in 1956 from a can of meat that had been irradiated with X-rays. The resistance to radiation may reflect its resistance to dessication, which also causes DNA damage. This organism may be of use in cleaning up toxic metals found at nuclear weapons production sites due to the radiation resistance. This bacterium is also a highly efficient transformer, and can readily take up exogenous DNA from the environment, which may also aid DNA repair. This organism carries multiple copies of many DNA repair genes, suggesting a robust system for dealing with DNA damage. The recombination system may rely on multiple copies of various repeat elements found throughout the genome.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_011958:53426 Rhodobacter sphaeroides KD131 chromosome 2, complete genome

Lineage: Rhodobacter sphaeroides; Rhodobacter; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: Bacteria belonging to the Rhodobacter group are metabolically versatile as they are able to grow using photosynthesis, chemosynthesis, and usually can grow under both anaerobic and aerobic conditions. The most extensively studied bacteria with regards to its photosynthetic capabilities which includes the structure, function and regulation of its photosynthetic membranes, its mechanisms of CO2 and nitrogen fixation, cytochrome diversity and its electron transport systems. It can grow aerobically and anaerobically in the light and anaerobically in the dark. It produces an intracytoplasmic membrane system consisting of membrane invaginations where the light harvesting complexes (LH1 and LH2) and the reaction center are synthesized. Furthermore, it has the ability to detoxify metal oxides and oxyanions and hence has a role in bioremediation.