Pre_GI: SWBIT SVG BLASTP

Query: NC_000964:521975 Bacillus subtilis subsp. subtilis str. 168, complete genome

Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This strain was derived in 1947 from an X-ray irradiated strain, Marburg. This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system.The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_014538:1975385 Thermoanaerobacter sp. X513 chromosome, complete genome

Lineage: Thermoanaerobacter; Thermoanaerobacter; Thermoanaerobacteraceae; Thermoanaerobacterales; Firmicutes; Bacteria

General Information: Country: USA; Environment: Fresh water; Isolation: Deep subsurface location at the Piceance Basin, Colorado, USA; Temp: Thermophile; Temp: 60C. Thermoanaerobacter sp. (strain X513) is an anaerobic, extreme thermophilic Gram-positive bacterium isolated by anaerobic enrichment culture from a deep subsurface sample (2000 m below the surface) taken from a core hole at the Piceance Basin, Colorado, USA. It can use a variety of electron donors, including glucose, acetate, hydrogen and xylose while reducing iron, chromium and uranium at 60 degrees.