Pre_GI: SWBIT SVG BLASTP

Query: CU928160:4248621 Escherichia coli IAI1 chromosome, complete genome

Lineage: Escherichia coli; Escherichia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism was named for its discoverer, Theodore Escherich, and is one of the premier model organisms used in the study of bacterial genetics, physiology, and biochemistry. This enteric organism is typically present in the lower intestine of humans, where it is the dominant facultative anaerobe present, but it is only one minor constituent of the complete intestinal microflora. E. coli, is capable of causing various diseases in its host, especially when they acquire virulence traits. E. coli can cause urinary tract infections, neonatal meningitis, and many different intestinal diseases, usually by attaching to the host cell and introducing toxins that disrupt normal cellular processes.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_018870:1417851 Thermacetogenium phaeum DSM 12270 chromosome, complete genome

Lineage: Thermacetogenium phaeum; Thermacetogenium; Thermoanaerobacteraceae; Thermoanaerobacterales; Firmicutes; Bacteria

General Information: Nitrogen fixation. Thermophilic strictly anaerobic bacterium oxidizing acetate to CO2 in syntrophic association with a methanogenic partner. Capable of growing with various substrates such as alcohols and methylated nitrogen compounds, and to reduce sulfate in the presence of acetate. Isolated from sludge of an anaerobic digester run at 58 degrees C. Thermacetogenium phaeum is a strictly anaerobic, homoacetogenic bacterium. It is exceptional because it can use the homoacetogenic Wood-Ljungdahl (CO- dehydrogenase) pathway both for acetate formation and acetate oxidation. Acetate oxidation is possible only in syntrophic cooperation with a methanogenic partner which maintains a low hydrogen and/or formate concentration in the coculture. With this, the bacterium operates close to the thermodynamic equilibrium of substrate conversion, similar to other syntrophically fermenting bacteria such as Syntrophomonas wolfei the genomes of which have been sequenced as well in the recent past.