Pre_GI: SWBIT SVG BLASTP

Query: CP002516:3949061 Escherichia coli KO11, complete genome

Lineage: Escherichia coli; Escherichia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism was named for its discoverer, Theodore Escherich, and is one of the premier model organisms used in the study of bacterial genetics, physiology, and biochemistry. This enteric organism is typically present in the lower intestine of humans, where it is the dominant facultative anaerobe present, but it is only one minor constituent of the complete intestinal microflora. E. coli, is capable of causing various diseases in its host, especially when they acquire virulence traits. E. coli can cause urinary tract infections, neonatal meningitis, and many different intestinal diseases, usually by attaching to the host cell and introducing toxins that disrupt normal cellular processes.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_002488:1157684 Xylella fastidiosa 9a5c, complete genome

Lineage: Xylella fastidiosa; Xylella; Xanthomonadaceae; Xanthomonadales; Proteobacteria; Bacteria

General Information: This strain was derived from a pathogenic strain (8.1b) isolated in 1992 in France that had come from infected twigs derived from the sweet orange strain Valencia in Brazil in the same year. This organism was first identified in 1993 as the causal agent of citrus variegated chlorosis, a disease that affects varieties of sweet oranges. Other strains of this species cause a range of diseases in mulberry, pear, almond, elm, sycamore, oak, maple, pecan and coffee which collectively result in multimillion dollar devastation of economically important plants. Xylella fastidiosa is similar to Xanthomonas campestris pv. campestris in that it produces a wide variety of pathogenic factors for colonization in a host-specific manner including a large number of fimbrial and afimbrial adhesins for attachment. It does not contain a type III secretion system, but possesses genes for a type II secretion system for export of exoenzymes that degrade the plant cell wall and allow the bacterium to colonize the plant xylem.