Pre_GI: SWBIT SVG BLASTP

Query: CP002185:794732 Escherichia coli W, complete genome

Lineage: Escherichia coli; Escherichia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism was named for its discoverer, Theodore Escherich, and is one of the premier model organisms used in the study of bacterial genetics, physiology, and biochemistry. This enteric organism is typically present in the lower intestine of humans, where it is the dominant facultative anaerobe present, but it is only one minor constituent of the complete intestinal microflora. E. coli, is capable of causing various diseases in its host, especially when they acquire virulence traits. E. coli can cause urinary tract infections, neonatal meningitis, and many different intestinal diseases, usually by attaching to the host cell and introducing toxins that disrupt normal cellular processes.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_002973:2701983 Listeria monocytogenes str. 4b F2365, complete genome

Lineage: Listeria monocytogenes; Listeria; Listeriaceae; Bacillales; Firmicutes; Bacteria

General Information: This strain was isolated in 1985 in California, USA, during an outbreak of listeriosis among patients with AIDS. The strain is of serotype 4b and was isolated from a cheese product that caused the outbreak. This organism, which causes listeriosis, is one of the leading causes of death from food-borne pathogens especially in pregnant women, newborns, the elderly, and immunocompromised individuals. It is found in environments such as decaying vegetable matter, sewage, water, and soil, and it can survive extremes of both temperatures (1-45 degrees C) and salt concentration marking it as an extremely dangerous food-born pathogen, especially on food that is not reheated. This organism is enteroinvasive, and utilizes an actin-based motility system by using a surface protein, ActA, that promotes actin polymerization, to spread intercellularly using the polymerized cytoskeletal protein as a "motor". There are 13 serovars associated with Listeria monocytogenes, and the serovar 4b strains are more commonly associated with invasive disease.