Pre_GI: SWBIT SVG BLASTP

Query: CP002185:2889656 Escherichia coli W, complete genome

Lineage: Escherichia coli; Escherichia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism was named for its discoverer, Theodore Escherich, and is one of the premier model organisms used in the study of bacterial genetics, physiology, and biochemistry. This enteric organism is typically present in the lower intestine of humans, where it is the dominant facultative anaerobe present, but it is only one minor constituent of the complete intestinal microflora. E. coli, is capable of causing various diseases in its host, especially when they acquire virulence traits. E. coli can cause urinary tract infections, neonatal meningitis, and many different intestinal diseases, usually by attaching to the host cell and introducing toxins that disrupt normal cellular processes.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_014974:404015 Thermus scotoductus SA-01 chromosome, complete genome

Lineage: Thermus scotoductus; Thermus; Thermaceae; Thermales; Deinococcus-Thermus; Bacteria

General Information: This is a thermophilic, facultatively mixotrophic sulfur-oxidizing bacterium. Thermus scotoductus SA-01 was isolated from fissure water in a South African gold mine. This organism is a thermophilic bacterium which was isolated from fissure water in the Witwatersrand Supergroup at a depth of 3.2 km below surface in a South African gold mine. It is a 2.9-billion-year-old formation of low permeability sandstone and shale with minor volcanic units and conglomerates. The ambient temperature of the rock is approximately 60°C. Samples were collected from a freshly mined rock surface and from a water-producing borehole that penetrated 121 m horizontally into the formation at a depth of 3,198 m. T. scotoductus SA-01 is a facultative anaerobe capable of coupling the oxidation of organic substrates to reduction of a wide range of electron acceptors, including nitrate, Fe(III), Mn(IV) or S(0) as terminal electron acceptors.