Pre_GI: SWBIT SVG BLASTN

Query: NC_021150:4929670 Azotobacter vinelandii CA6, complete genome

Lineage: Azotobacter vinelandii; Azotobacter; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism was first isolated from the soil in Vineland, New Jersey, although it is found worldwide. It is a large obligate aerobe that has one of the highest respiratory rates of any organism. Azotobacter vinelandii also produces a number of unusual nitrogenases which allow it to fix atmospheric nitrogen to ammonia, a compound it can then use as a nitrogen source. It protects the oxygen-sensitive nitrogenase enzymes through its high respiratory rate, which sequesters the nitrogenase complexes in an anoxic environment. This organism has a number of unusual characteristics. Under extreme environmental conditions, the cell will produce a cyst that is resistant to dessication and is surrounded by two capsular polysaccharide layers. This organism produces two industrially important polysaccharides, poly-beta-hydroxybutyrate (PHB) and alginate. PHB is a thermoplastic biopolymer, and alginate is used in the food industry. Alginate is also used by the pathogen Pseudomonas aeruginosa to infect the lungs of cystic fibrosis patients.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010742:1595065 Brucella abortus S19 chromosome 1, complete sequence

Lineage: Brucella abortus; Brucella; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Causes bovine brucellosis. They are highly infectious, and can be spread through contact with infected animal products or through the air, making them a potential bioterrorism agent. Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Virulence may depend on a type IV secretion system which may promote intracellular growth by secreting important effector molecules. This organism was first noticed on the island of Malta by Dr. David Bruce during an epidemic among British soldiers. It is the primary cause of bovine brucellosis, which results in enormous (billions of dollars) economic losses due primarily to reproductive failure and food losses. In man, it causes undulant fever, a long debilitating disease that is treated by protracted administration of antibiotics.