Pre_GI: SWBIT SVG BLASTN

Query: NC_021150:2026496 Azotobacter vinelandii CA6, complete genome

Lineage: Azotobacter vinelandii; Azotobacter; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism was first isolated from the soil in Vineland, New Jersey, although it is found worldwide. It is a large obligate aerobe that has one of the highest respiratory rates of any organism. Azotobacter vinelandii also produces a number of unusual nitrogenases which allow it to fix atmospheric nitrogen to ammonia, a compound it can then use as a nitrogen source. It protects the oxygen-sensitive nitrogenase enzymes through its high respiratory rate, which sequesters the nitrogenase complexes in an anoxic environment. This organism has a number of unusual characteristics. Under extreme environmental conditions, the cell will produce a cyst that is resistant to dessication and is surrounded by two capsular polysaccharide layers. This organism produces two industrially important polysaccharides, poly-beta-hydroxybutyrate (PHB) and alginate. PHB is a thermoplastic biopolymer, and alginate is used in the food industry. Alginate is also used by the pathogen Pseudomonas aeruginosa to infect the lungs of cystic fibrosis patients.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009663:2500186 Sulfurovum sp. NBC37-1, complete genome

Lineage: Sulfurovum; Sulfurovum; Helicobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: This strain was isolated from a deep-sea hydrothermal vent in the Iheya North field in the Mid-Okinawa Trough, Japan as part of a larger diversity study. This rod-shaped bacterium grows chemolithoautotrophically and can utilize a wide spectrum of electron donors and acceptors (i.e. hydrogen, sulfur compounds, nitrate and oxygen). It can occupy different ecological niches, and its metabolic versatility probably enables it to adapt to the geochemical variability in deep-sea hydrothermal environments.