Pre_GI: SWBIT SVG BLASTN

Query: NC_020211:4484817 Serratia marcescens WW4, complete genome

Lineage: Serratia marcescens; Serratia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism was discovered in 1819 by Bizio who named the organism after the Italian physicist Serrati. It was considered a nonpathogenic organism until late in the 20th century, although pathogenicity was noted as early as 1913. Serratia marcescens is an opportunistic human pathogen that is increasingly associated with life-threatening hospital-acquired infections. It is an environmental organism that has a broad host range, and is capable of infecting vertebrates and invertebrates, as well as plants. In humans, Serratia marcescens can cause meningitis (inflammation of the membrane surrounding the brain and spinal cord), endocarditis (inflammation of heart muscle) and pyelonephritis (inflammation of the kidneys). Many strains are resistant to multiple antibiotics. Environmental isolates are noted by production of the red pigment prodigiosin.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009925:4997000 Acaryochloris marina MBIC11017, complete genome

Lineage: Acaryochloris marina; Acaryochloris; ; Chroococcales; Cyanobacteria; Bacteria

General Information: Acaryochloris marina MBIC11017 was isolated from algae from the coast of the Palau Islands in the western Pacific. Marine cyanobacterium. Acaryochloris marina was first isolated as an epiphyte of algae. M. marina been isolated from a variety of habitats and locations, usually associated with algae but also as free-living organisms. This cyanobacterium produces an atypical photosynthetic pigment, chlorophyll d, as the major reactive agent. The oxygenic photosynthesis based on this pigment may have evolved as an acclimatization to far-red light environments, or an as intermediate between the red-absorbing oxygenic and the far-red-absorbing anoxygenic photosynthesis that uses bacteriochlorophylls. Because of the unusual ratio of chlorophyll a to chlorophyll d in this organism, it has been used as a model to study the spectrographic characteristics of the two pigments.