Pre_GI: SWBIT SVG BLASTN

Query: NC_020134:2948000 Clostridium stercorarium subsp. stercorarium DSM 8532, complete

Lineage: Clostridium stercorarium; Clostridium; unclassified Ruminococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: Lignocellulosic biomass has great potential as an abundant and renewable source of fermentable sugars through enzymic saccharification. Clostridium stercorarium is a catabolically versatile bacterium producing a wide range of hydrolases for degradation of biomass. Together with Clostridium thermocellum, Clostridium aldrichii and other cellulose degraders, it forms group I of the clostridia. It is moderately thermophilic, with an optimum growth temperature of 65 degrees C, and has repeatedly been isolated from self-heated compost. The two-component cellulase system of C. stercorarium has been investigated thoroughly. Due to its ability to utilize the various polysaccharides present in biomass it is especially suited for the fermentation of hemicellulose to organic solvents. Some isolates have been used in Japan in a single-step ethanol-fermenting pilot-process with lignocellulosic biomass as substrate.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_015707:1911431 Thermotoga thermarum DSM 5069 chromosome, complete genome

Lineage: Thermotoga thermarum; Thermotoga; Thermotogaceae; Thermotogales; Thermotogae; Bacteria

General Information: Country: Djibouti; Isolation: Continental solfataric spring; Africa; Temp: Hyperthermophile; Temp: 80C. This organism, a member of the Thermotogales, has the characteristic morphology of one or more cells contained in a sheath-like envelope which extends beyond the cell wall. Preliminary sequencing of Thermotogales genomes has identified extensive horizontal gene transfer between these organisms and the Archaea. Thermotoga thermarum does not grow at high salt concentrations (>0.6% NaCL). This organism also produces heat stable enzymes such as endoxylanase, beta xylosidase and alpha arabinofuranosidase which may have commercial uses.