Pre_GI: SWBIT SVG BLASTN

Query: NC_020064:79422 Serratia marcescens FGI94, complete genome

Lineage: Serratia marcescens; Serratia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism was discovered in 1819 by Bizio who named the organism after the Italian physicist Serrati. It was considered a nonpathogenic organism until late in the 20th century, although pathogenicity was noted as early as 1913. Serratia marcescens is an opportunistic human pathogen that is increasingly associated with life-threatening hospital-acquired infections. It is an environmental organism that has a broad host range, and is capable of infecting vertebrates and invertebrates, as well as plants. In humans, Serratia marcescens can cause meningitis (inflammation of the membrane surrounding the brain and spinal cord), endocarditis (inflammation of heart muscle) and pyelonephritis (inflammation of the kidneys). Many strains are resistant to multiple antibiotics. Environmental isolates are noted by production of the red pigment prodigiosin.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004347:103967 Shewanella oneidensis MR-1, complete genome

Lineage: Shewanella oneidensis; Shewanella; Shewanellaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This strain was isolated from Oneida lake in New York, USA. Potential bioremediation organism. This genus includes species that inhabit a wide range of environments and are capable of utilizing a wide variety of electron acceptors during anaerobic respiration including some insoluble metal oxides while using very few carbon sources such as lactate or acetate. This group of organisms have been studied extensively for their electron transport systems. This organism is a facultative anaerobe that is capable of using a wide variety of terminal electron acceptors during anaerobic respiration which may make it valuable for bioremediation. Since the bacteria can reduce chromium and uranium from the liquid phase to form insoluble compounds, they may be used to eliminate these two environmental pollutants from water.