Pre_GI: SWBIT SVG BLASTN

Query: NC_019896:3491000 Bacillus subtilis subsp. subtilis str. BSP1 chromosome, complete

Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system. The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007963:1370903 Chromohalobacter salexigens DSM 3043, complete genome

Lineage: Chromohalobacter salexigens; Chromohalobacter; Halomonadaceae; Oceanospirillales; Proteobacteria; Bacteria

General Information: Chromohalobacter salexigens DSM 3043 was first isolated from a solar salt facility on Bonaire Island, Netherlands Antilles. A moderate halophile which can grow on a variety of salts. This bacterium is a moderate halophile, yet does not require high concentrations of sodium chloride. The salt requirements of this organism can be met by ions of other salts, such as potassium, rubidium, ammonium, bromide. Several plasmids have been isolated from this organism. Plasmid pMH1 contains genes for resistance to kanamycin, neomycin, and tetracycline. A smaller plasmid, pHE1, which does not code for antibiotic resistance genes, has also been isolated.