Pre_GI: SWBIT SVG BLASTN

Query: NC_018145:104303 Zymomonas mobilis subsp. mobilis ATCC 29191 chromosome, complete

Lineage: Zymomonas mobilis; Zymomonas; Sphingomonadaceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: Isolation: Fermenting Elaeis palm sap; Temp: Mesophile. The natural habitat of this organism includes sugar-rich plant saps where the bacterium ferments sugar to ethanol. The high conversion of sugars to ethanol makes this organism useful in industrial production systems, particularly in production of bioethanol for fuel. A recombinant strain of this bacterium is utilized for the conversion of sugars, particularly xylose, which is not utilized by another common sugar-fermenting organism such as yeast, to ethanol. Since xylose is a common breakdown product of cellulose or a waste component of the agricultural industry, it is an attractive source for ethanol production. Zymomonas mobilis was chosen for this process as it is ethanol-tolerant (up to 120 grams of ethanol per litre) and productive (5-10% more ethanol than Saccharomyces). This bacterium ferments using the Enter-Doudoroff pathway, with the result that less carbon is used in cellular biomass production and more ends up as ethanol, another factor that favors this organism for ethanol production.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008711:424482 Arthrobacter aurescens TC1, complete genome

Lineage: Arthrobacter aurescens; Arthrobacter; Micrococcaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: The TC1 strain was isolated from a South Dakota, USA spill site soil that contained high concentrations (up to 29,000 microg/ml) of atrazine. Converts agricultural biomass to ethanol. Arthrobacter aurescens is found worldwide in the soil, water, and subsurface. It breaks down organic matter and is able to transform heavy metals into less toxic forms, such as the conversion of mercury salts into the neutral metal. It is also capable of utilizing t-anethole as a sole carbon source, and transforming it with high yield into valuable aromatic compounds which could potentially be used for aromas and flavorings.