Pre_GI: SWBIT SVG BLASTN

Query: NC_018145:104303 Zymomonas mobilis subsp. mobilis ATCC 29191 chromosome, complete

Lineage: Zymomonas mobilis; Zymomonas; Sphingomonadaceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: Isolation: Fermenting Elaeis palm sap; Temp: Mesophile. The natural habitat of this organism includes sugar-rich plant saps where the bacterium ferments sugar to ethanol. The high conversion of sugars to ethanol makes this organism useful in industrial production systems, particularly in production of bioethanol for fuel. A recombinant strain of this bacterium is utilized for the conversion of sugars, particularly xylose, which is not utilized by another common sugar-fermenting organism such as yeast, to ethanol. Since xylose is a common breakdown product of cellulose or a waste component of the agricultural industry, it is an attractive source for ethanol production. Zymomonas mobilis was chosen for this process as it is ethanol-tolerant (up to 120 grams of ethanol per litre) and productive (5-10% more ethanol than Saccharomyces). This bacterium ferments using the Enter-Doudoroff pathway, with the result that less carbon is used in cellular biomass production and more ends up as ethanol, another factor that favors this organism for ethanol production.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007298:1418500 Dechloromonas aromatica RCB, complete genome

Lineage: Dechloromonas aromatica; Dechloromonas; Rhodocyclaceae; Rhodocyclales; Proteobacteria; Bacteria

General Information: This strain was enriched as a hydrocarbon-oxidizing chlorate-reducer from the Potomac River, Maryland, USA. This organism is the first one to have the capability of benzene oxidation in pure anaerobic culture by coupling it to nitrate reduction which is of importance due to the anaerobic environments often found in bioremediation projects. It can reduce perchlorate and chlorate to chloride. This organism may be used for bioremediation as it can oxidize aromatic hydrocarbon compounds, including benzene, in the absence of oxygen. Benzene is an important pollutant, and is used in many manufacturing processes and is a component of diesel fuel.