Pre_GI: SWBIT SVG BLASTN

Query: NC_018145:104303 Zymomonas mobilis subsp. mobilis ATCC 29191 chromosome, complete

Lineage: Zymomonas mobilis; Zymomonas; Sphingomonadaceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: Isolation: Fermenting Elaeis palm sap; Temp: Mesophile. The natural habitat of this organism includes sugar-rich plant saps where the bacterium ferments sugar to ethanol. The high conversion of sugars to ethanol makes this organism useful in industrial production systems, particularly in production of bioethanol for fuel. A recombinant strain of this bacterium is utilized for the conversion of sugars, particularly xylose, which is not utilized by another common sugar-fermenting organism such as yeast, to ethanol. Since xylose is a common breakdown product of cellulose or a waste component of the agricultural industry, it is an attractive source for ethanol production. Zymomonas mobilis was chosen for this process as it is ethanol-tolerant (up to 120 grams of ethanol per litre) and productive (5-10% more ethanol than Saccharomyces). This bacterium ferments using the Enter-Doudoroff pathway, with the result that less carbon is used in cellular biomass production and more ends up as ethanol, another factor that favors this organism for ethanol production.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_002947:4362271 Pseudomonas putida KT2440, complete genome

Lineage: Pseudomonas putida; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain was derived from a toluene-degrading isolate, Pseudomonas arvilla strain mt-2 (renamed Pseudomonas putida mt-2), by loss of its plasmid. Common environmental bacterium. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. As they are metabolically versatile, and well characterized, it makes them great candidates for biocatalysis, bioremediation and other agricultural applications. Certain strains have been used in the production of bioplastics.