Pre_GI: SWBIT SVG BLASTN

Query: NC_017515:155634 Neisseria meningitidis M04-240196 chromosome, complete genome

Lineage: Neisseria meningitidis; Neisseria; Neisseriaceae; Neisseriales; Proteobacteria; Bacteria

General Information: The second of two pathogenic Neisseria, this organism causes septicemia and is the leading cause of life-threatening meningitis (inflammation of the meninges, the membrane surrounding the brain and spinal cord) in children. This organism typically residies in the nasopharynx cavity but can invade the respiratory epthelial barrier, cross into the bloodstream and the blood brain barrier, and cause inflammation of the meninges. Pathogenicity factors include the surface proteins (porins and opacity proteins), and the type IV pilus (which is also found in Neisseria gonorrhoeae). This organism, like Neisseria gonorrhoeae, is naturally competent, and protein complexes at the cell surface recognize the uptake signal sequence in extracellular DNA, an 8mer that is found at high frequency in Neisseria chromosomal DNA.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_014034:152264 Rhodobacter capsulatus SB1003 chromosome, complete genome

Lineage: Rhodobacter capsulatus; Rhodobacter; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: This strain is a derivative strain isolated in the laboratory of Barry Marrs from the classical progenitor strain B10. It is rifampicin-resistant, produces GTA, and is capable of growing under high illumination (resistant to photooxidative killing). Bacteria belonging to the Rhodobacter group are metabolically versatile as they are able to use photosynthesis and usually can grow under both anaerobic and aerobic conditions. This organism is a facultatively phototrophic purple non-sulfur bacterium and the type species of the Rhodobacter group. The colony's color depends largely on the amount of oxygen present in its environment. While it is able to produce cellular energy in a number of different ways, it can rely on anoxygenic photosynthesis under anaerobic conditions in the presence of light. Some strains produce the Gene Transfer Element (GTA), a pro-phage particle capable of transferring genetic material between strains.