Pre_GI: SWBIT SVG BLASTN

Query: NC_017431:451551 Chlamydia trachomatis E/11023 chromosome, complete genome

Lineage: Chlamydia trachomatis; Chlamydia; Chlamydiaceae; Chlamydiales; Chlamydiae; Bacteria

General Information: Bacteria belonging to the Chlamydiales group are obligate intracellular parasites of eukaryotic cells. They are found within vertebrates, invertebrate cells, and amoebae hosts. Chlamydiae are one of the commonest causes of sexually transmitted diseases (STDs) and if left untreated may cause infertility in women. They are transmitted by direct contact or aerosols, and can cause various diseases, while also being able to coexist with the host in an apparently asymptomatic state. This species causes infection that leads to blindness and sexually transmitted diseases in humans. There are 15 serovariants that preferentially cause disease in either the eye or the urogenital tract. The trachoma (infection of the mucous membrane of the eyelids) biovars are noninvasive and can cause blinding trachoma (variants A, B, Ba, and C), or sexually transmitted diseases (variants, D, E, F, G, H, I, J, and K). The lymphogranuloma venereum biovars (variants L1, L2, and L3) can cross the epithelial cells of mucous membranes and then travel through the lymphatic system where they multiply within mononuclear phagocytes found within the lymph nodes.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010729:1014957 Porphyromonas gingivalis ATCC 33277, complete genome

Lineage: Porphyromonas gingivalis; Porphyromonas; Porphyromonadaceae; Bacteroidales; Bacteroidetes; Bacteria

General Information: This strain was isolated from human gingiva. This organism is associated with severe and chronic periodontal (tissues surrounding and supporting the tooth) diseases. Progression of the disease is caused by colonization by this organism in an anaerobic environment in host tissues and severe progression results in loss of the tissues supporting the tooth and eventually loss of the tooth itself. The black pigmentation characteristic of this bacterium comes from iron acquisition that does not use the typical siderophore system of other bacteria but accumulates hemin. Peptides appear to be the predominant carbon and energy source of this organism, perhaps in keeping with its ability to destroy host tissue. Oxygen tolerance systems play a part in establishment of the organism in the oral cavity, including a superoxide dismutase. Pathogenic factors include extracellular adhesins that mediate interactions with other bacteria as well as the extracellular matrix, and a host of degradative enzymes that are responsible for tissue degradation and spread of the organism including the gingipains, which are trypsin-like cysteine proteases.