Pre_GI: SWBIT SVG BLASTN

Query: NC_017379:1035464 Helicobacter pylori Puno135 chromosome, complete genome

Lineage: Helicobacter pylori; Helicobacter; Helicobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: This genus consists of organisms that colonize the mucosal layer of the gastrointestinal tract or are found enterohepatically (in the liver). It was only recently discovered (1983) by two Australians (Warren and Marshall) that this organism was associated with peptic ulcers. It is one of the most common chronic infectious organisms, and is found in half the world's population. This organism attacks the gastric epithilial surface, resulting in chronic gastritis, and can cause more severe diseases including those that lead to gastric carcinomas and lymphomas, peptic ulcers, and severe diarrhea. It is an extracellular pathogen that persists in the gastric environment, which has a very low pH, by production of the urease enzyme, which converts urea to ammonia and carbon dioxide, a process which can counteract the acidic environment by production of a base. The toxins include cytolethal distending toxin, vacuolating cytotoxin (VacA) that induces host epithelial cell apopoptosis (cell death), and the cytotoxin associated antigen (CagA) which results in alteration to the host cell signalling pathways. The CagA protein is translocated into host cells by a type IV secretion system encoded by the cag pathogenicity island.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_003911:3453764 Silicibacter pomeroyi DSS-3, complete genome

Lineage: Ruegeria pomeroyi; Ruegeria; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: Formerly Silicibacter pomeroyi, his marine bacterium is a member of the Roseobacter clade and was isolated off of the coast of Georgia in 1998. Dimethylsulfoniopropionate-degrading bacterium. Capable of degrading the organic sulfur compound DMSP (dimethylsulfoniopropionate) and can metabolize a number of sulfur compounds. DMSP is synthesized by marine algae and the degradation product dimethylsulfide contributes to the global sulfur cycle.